Complementary inequalities to inequalities of Jensen and Ando based on the Mond–Pečarić method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Normalized Jensen Functional, Superquadracity and Related Inequalities

In this paper we generalize the inequality MJn (f,x,q) ≥ Jn (f,x,p) ≥ mJn (f,x,q) where Jn (f,x,p) = n ∑ i=1 pif (xi)− f ( n ∑ i=1 pixi ) , obtained by S.S. Dragomir for convex functions. We provide cases where we can improve the bounds m and M for convex functions, and also, we show that for the class of superquadratic functions nonzero lower bounds of Jn (f,x,p)− mJn (f,x,q) and nonzero upper...

متن کامل

Inequalities of Jensen-pečarić-svrtan-fan Type

By using the theory of majorization, the following inequalities of Jensen-PečarićSvrtan-Fan type are established: Let I be an interval, f : I → R and t ∈ I, x, a, b ∈ I. If a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1, a1 +b1 ≤ · · · ≤ an +bn; f(t) > 0, f ′(t) > 0, f ′′(t) > 0, f ′′′(t) < 0 for any t ∈ I, then f(A(a)) f(A(b)) = fn,n(a) fn,n(b) ≤ · · · ≤ fk+1,n(a) fk+1,n(b) ≤ fk,n(a) fk,n(b) ≤ · · · ≤ f1,n...

متن کامل

Strengthened Converses of the Jensen and Edmundson–lah–ribarič Inequalities

In this paper, we give converses of the Jensen and Edmundson– Lah–Ribarič inequalities which are more accurate than the existing ones. These converses are given in a difference form and they rely on the recent refinement of the Jensen inequality obtained via linear interpolation of a convex function. As an application, we also derive improved converse relations for generalized means, for the Hö...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2000

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(00)00160-9